Publicité
La bourse ferme dans 6 h 41 min
  • CAC 40

    7 963,31
    -59,95 (-0,75 %)
     
  • Euro Stoxx 50

    4 892,52
    -44,05 (-0,89 %)
     
  • Dow Jones

    37 775,38
    +22,07 (+0,06 %)
     
  • EUR/USD

    1,0647
    +0,0001 (+0,01 %)
     
  • Gold future

    2 396,90
    -1,10 (-0,05 %)
     
  • Bitcoin EUR

    60 535,64
    +2 784,69 (+4,82 %)
     
  • CMC Crypto 200

    1 326,78
    +14,16 (+1,08 %)
     
  • Pétrole WTI

    83,11
    +0,38 (+0,46 %)
     
  • DAX

    17 667,76
    -169,64 (-0,95 %)
     
  • FTSE 100

    7 828,71
    -48,34 (-0,61 %)
     
  • Nasdaq

    15 601,50
    -81,87 (-0,52 %)
     
  • S&P 500

    5 011,12
    -11,09 (-0,22 %)
     
  • Nikkei 225

    37 068,35
    -1 011,35 (-2,66 %)
     
  • HANG SENG

    16 224,14
    -161,73 (-0,99 %)
     
  • GBP/USD

    1,2441
    +0,0003 (+0,02 %)
     

Automotive Intelligent Cockpit Design Trend Report, 2020

Outperforming conventional one in intelligence and comfort, intelligent cockpit is born with the availability of more and more electronics onto vehicle and caters to the user’s needs better. It is evolving apace alongside rapid advances in new intelligence technologies and new materials.

New York, Jan. 07, 2021 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Automotive Intelligent Cockpit Design Trend Report, 2020" - https://www.reportlinker.com/p06003502/?utm_source=GNW


It is analytically judged from major suppliers and their cockpits configured to new models as well as the cockpit configuration of concept cars launched in recent years that automotive intelligent cockpit design will be headed in directions below:

1. Intelligent cockpit will bear richer versatilities.

The upgrade of automotive electronics brings functional build-up of new products. Also, new features like driver monitor system (DMS), driving recorder, rear row entertainment display and co-pilot entertainment display enrich intelligent cockpit.

What’s more, the use of intelligent surface and multiple sensors in vehicle cockpit gives more scope to versatile cockpit design. For instance, window is not only a shelter from wind and rain but also an information display. HUD, sunroof and seat material can be used for displaying vehicle and entertainment information.

2. Multi-channel, fused interaction will become a mainstay in human-vehicle interaction.

Apart from button, touch and voice, human-vehicle interaction modes like voice assistant, gesture recognition, fingerprint, sound localization, face recognition and holographic image have been found in vehicle models launched. For example, BMW Natural Interaction, a new interaction system planned to be available to new iNext in 2021, seamlessly integrates with voice and gesture control and gaze recognition, which allows the driver to choose what they want in the interaction system; all-new Mercedes-Benz S-Class released in September 2020, features an upgraded gesture recognition capability that enables gesture control over center console, and recognition of face direction and body language via the in-vehicle camera to open the function as needed.

Safety should be first taken into account in design of a simpler, easy-to-use vehicle cockpit which acts as a human-vehicle interaction interface. Hopefully, multi-channel, fused interaction modes involving fabrics interaction, window interaction, intelligent headlight interaction, iris recognition and lip reading recognition are expected to be seen in intelligent vehicles, delivering an ever better user experience.

3. 3D, multiple screen, large-size display and diversified layout will hold the trends for intelligent cockpit display.

In an age of scenario-based interaction, cockpit layout no longer follows the same pattern. Center console integrated display designs from dual-screen and triple-screen to quint-screen display, for example, have been adopted by quite a few OEMs in 2020, besides usual console and cluster designs. Moreover, new displays including control screen, co-pilot entertainment screen, rear row display and transparent A-pillar have also been deployed in cars in a new way. In 2019 NeZha U added a transparent A-pillar; a virtual rearview mirror is mounted on the door of 2020 Audi e-tron Sportback at the driver’s side. These new designs are far and away new highlights for new cars.

4. “User experience”-centric cockpit scenario-based interaction modes will become pervasive.

For in-vehicle scenario-based interaction modes, new models on the market deliver simple scenario interactions with smart configurations from voice and ambient light to smart seat and in-car cameras. Take Mercedes-Benz S-Class introduced in September 2020 as an example. The model’s active ambient lighting that enshrines 263 LEDs automatically projects a bright red animation as a warning throughout the cabin when necessary, and gives real-time lighting feedback when the driver controls the air-conditioning system and “Hey Mercedes” voice assistant. As new technologies mature and come into use, vehicle interior space will vary with scenarios to meet the users’ needs. And in-vehicle scenario modes (e.g., driving, rest and office) will change to build an intelligent, connected, flexible, comfortable personal interior space.

Additionally, the ever upgraded intelligent connectivity system enables availability of such features as voice-activated shopping, WeChat vehicle version and Alipay applets onto vehicles. Scenario-based interactions between the inside and outside of vehicles make vehicles a third space.

5. The maturing new materials for intelligent surfaces will likely enable every surface with interaction ability.

In the Vision BMW i International EASE cockpit, the seats covered by 3D knitted fabric interactive materials allows for touch control over functions. Yanfeng Global Automotive Interior Systems Co., Ltd.’s XiM21 smart cockpit combines digital technology, lighting and physical materials to realize touch switch and create ambience. There are several optional surface materials such as crystal, wood grain and fabric. The touch switch applies pressure sensing technology to ensure safety. The display module is composed of fabric decorative surface and ambient light, differing from common physical buttons.

6. Touch feedback will be a key technology for higher level of safety.

Automotive HMI design follows the principle of lowering the level of driver’s distraction and making input and output of vehicle data more effective. As virtual touch buttons/switches find broader application in vehicles, touch feedback technology becomes a crucial way to improve safety. As start-ups such as Tanvas, Immersion, Boréas Technologies and Aito are deploying the technology, major tier-1 suppliers like Continental, Valeo and Bosch also race to make presence.

Bosch’s proprietary “NeoSense” touchscreen gives haptic feedback to users. With buttons on the screen touch as real ones, frequent users even don’t need to see the display to complete operation.

7. Software system will play as a key means to differentiate cockpits.

Android system has enriched IVI system scenarios and provides more personalized human-machine interfaces in efforts to make a rapider expansion in the automotive market, amid simultaneous iterations of software and hardware. To this end, vehicle software providers keep trying to sharpen their software tools and provide more efficient services for OEMs and suppliers. Based on useful functions, human-vehicle interaction interface design does not go into a rut. Some innovative UI designs like 3D vision, visualized, young, flat and card style designs have been found in new vehicles.

It is analytically judged from major suppliers and their cockpits configured to new models as well as the cockpit configuration of concept cars launched in recent years that automotive intelligent cockpit design will be headed in directions below:

1. Intelligent cockpit will bear richer versatilities.

The upgrade of automotive electronics brings functional build-up of new products. Also, new features like driver monitor system (DMS), driving recorder, rear row entertainment display and co-pilot entertainment display enrich intelligent cockpit.

What’s more, the use of intelligent surface and multiple sensors in vehicle cockpit gives more scope to versatile cockpit design. For instance, window is not only a shelter from wind and rain but also an information display. HUD, sunroof and seat material can be used for displaying vehicle and entertainment information.

2. Multi-channel, fused interaction will become a mainstay in human-vehicle interaction.

Apart from button, touch and voice, human-vehicle interaction modes like voice assistant, gesture recognition, fingerprint, sound localization, face recognition and holographic image have been found in vehicle models launched. For example, BMW Natural Interaction, a new interaction system planned to be available to new iNext in 2021, seamlessly integrates with voice and gesture control and gaze recognition, which allows the driver to choose what they want in the interaction system; all-new Mercedes-Benz S-Class released in September 2020, features an upgraded gesture recognition capability that enables gesture control over center console, and recognition of face direction and body language via the in-vehicle camera to open the function as needed.

Safety should be first taken into account in design of a simpler, easy-to-use vehicle cockpit which acts as a human-vehicle interaction interface. Hopefully, multi-channel, fused interaction modes involving fabrics interaction, window interaction, intelligent headlight interaction, iris recognition and lip reading recognition are expected to be seen in intelligent vehicles, delivering an ever better user experience.

3. 3D, multiple screen, large-size display and diversified layout will hold the trends for intelligent cockpit display.

In an age of scenario-based interaction, cockpit layout no longer follows the same pattern. Center console integrated display designs from dual-screen and triple-screen to quint-screen display, for example, have been adopted by quite a few OEMs in 2020, besides usual console and cluster designs. Moreover, new displays including control screen, co-pilot entertainment screen, rear row display and transparent A-pillar have also been deployed in cars in a new way. In 2019 NeZha U added a transparent A-pillar; a virtual rearview mirror is mounted on the door of 2020 Audi e-tron Sportback at the driver’s side. These new designs are far and away new highlights for new cars.

4. “User experience”-centric cockpit scenario-based interaction modes will become pervasive.

For in-vehicle scenario-based interaction modes, new models on the market deliver simple scenario interactions with smart configurations from voice and ambient light to smart seat and in-car cameras. Take Mercedes-Benz S-Class introduced in September 2020 as an example. The model’s active ambient lighting that enshrines 263 LEDs automatically projects a bright red animation as a warning throughout the cabin when necessary, and gives real-time lighting feedback when the driver controls the air-conditioning system and “Hey Mercedes” voice assistant. As new technologies mature and come into use, vehicle interior space will vary with scenarios to meet the users’ needs. And in-vehicle scenario modes (e.g., driving, rest and office) will change to build an intelligent, connected, flexible, comfortable personal interior space.

Additionally, the ever upgraded intelligent connectivity system enables availability of such features as voice-activated shopping, WeChat vehicle version and Alipay applets onto vehicles. Scenario-based interactions between the inside and outside of vehicles make vehicles a third space.

5. The maturing new materials for intelligent surfaces will likely enable every surface with interaction ability.

In the Vision BMW i International EASE cockpit, the seats covered by 3D knitted fabric interactive materials allows for touch control over functions. Yanfeng Global Automotive Interior Systems Co., Ltd.’s XiM21 smart cockpit combines digital technology, lighting and physical materials to realize touch switch and create ambience. There are several optional surface materials such as crystal, wood grain and fabric. The touch switch applies pressure sensing technology to ensure safety. The display module is composed of fabric decorative surface and ambient light, differing from common physical buttons.

6. Touch feedback will be a key technology for higher level of safety.

Automotive HMI design follows the principle of lowering the level of driver’s distraction and making input and output of vehicle data more effective. As virtual touch buttons/switches find broader application in vehicles, touch feedback technology becomes a crucial way to improve safety. As start-ups such as Tanvas, Immersion, Boréas Technologies and Aito are deploying the technology, major tier-1 suppliers like Continental, Valeo and Bosch also race to make presence.

Bosch’s proprietary “NeoSense” touchscreen gives haptic feedback to users. With buttons on the screen touch as real ones, frequent users even don’t need to see the display to complete operation.

7. Software system will play as a key means to differentiate cockpits.

Android system has enriched IVI system scenarios and provides more personalized human-machine interfaces in efforts to make a rapider expansion in the automotive market, amid simultaneous iterations of software and hardware. To this end, vehicle software providers keep trying to sharpen their software tools and provide more efficient services for OEMs and suppliers. Based on useful functions, human-vehicle interaction interface design does not go into a rut. Some innovative UI designs like 3D vision, visualized, young, flat and card style designs have been found in new vehicles.
Read the full report: https://www.reportlinker.com/p06003502/?utm_source=GNW

About Reportlinker
ReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.

__________________________

CONTACT: Clare: clare@reportlinker.com US: (339)-368-6001 Intl: +1 339-368-6001